Abstract

Understanding the hybrid charge-storage mechanisms of pseudocapacitive nanomaterials holds promising keys to further improve the performance of energy storage devices. Based on the dependence of the light scattering intensity of single Prussian blue nanoparticles (PBNPs) on their oxidation state during sinusoidal potential modulation at varying frequencies, we present an electro-optical microscopic imaging approach to optically acquire the Faradaic electrochemical impedance spectroscopy (oEIS) of single PBNPs. Here we reveal typical pseudocapacitive behavior with hybrid charge-storage mechanisms depending on the modulation frequency. In the low-frequency range, the optical amplitude is inversely proportional to the square root of the frequency (∆If−0.5; diffusion-limited process), while in the high-frequency range, it is inversely proportional to the frequency (∆If−1; surface charging process). Because the geometry of single cuboid-shaped PBNPs can be precisely determined by scanning electron microscopy and atomic force microscopy, oEIS of single PBNPs allows the determination of the depth of the surface charging layer, revealing it to be ~2 unit cells regardless of the nanoparticle size.

The surface charging layer in nanomaterials, which determines their pseudocapacitive behavior, is challenging to characterize. Here the authors perform Faradic electrochemical impedance spectroscopy measurements of single cuboid Prussian blue nanoparticles, displaying a hybrid charge storage mechanism, and determine the depth of the surface charging layer.

Details

Title
Determining the depth of surface charging layer of single Prussian blue nanoparticles with pseudocapacitive behaviors
Author
Niu, Ben 1   VIAFID ORCID Logo  ; Jiang Wenxuan 1 ; Jiang, Bo 1 ; Lv Mengqi 1 ; Wang, Sa 1 ; Wang, Wei 1   VIAFID ORCID Logo 

 Nanjing University, State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing, China (GRID:grid.41156.37) (ISNI:0000 0001 2314 964X) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2656442839
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.