Abstract

The aim of the present study was to develop a prediction model for subjective voice disorders based on an artificial neural network algorithm and a decision tree using national statistical data. Subjects of analysis were 8,713 adults over the age of 19 (3,801 males and 4,912 females) who completed the otolaryngological examination of the Korea National Health and Nutrition Examination Survey from 2010 to 2012. Explanatory variables included age, education level, income, occupation, problem drinking, coffee consumption, and pain and discomfort from disease over the last two weeks. A multi-layer perceptron artificial neural network and a decision tree model were used for the analysis. In this model, smoking, pain and discomfort from disease over the last two weeks, education level, occupation, and income were drawn out as major predictors of subjective voice disorders. In order to minimize the risk of dysphonia, it is necessary to establish a scientific management system for high-risk groups.

Details

Title
The Factors of Subjective Voice Disorder Using Integrated Method of Decision Tree and Multi-Layer Perceptron Artificial Neural Network Algorithm
Author
Byeon, Haewon; Cho, Sunghyoun
Publication year
2016
Publication date
2016
Publisher
Science and Information (SAI) Organization Limited
ISSN
2158107X
e-ISSN
21565570
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2656469833
Copyright
© 2016. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.