It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The aim of the present study was to develop a prediction model for subjective voice disorders based on an artificial neural network algorithm and a decision tree using national statistical data. Subjects of analysis were 8,713 adults over the age of 19 (3,801 males and 4,912 females) who completed the otolaryngological examination of the Korea National Health and Nutrition Examination Survey from 2010 to 2012. Explanatory variables included age, education level, income, occupation, problem drinking, coffee consumption, and pain and discomfort from disease over the last two weeks. A multi-layer perceptron artificial neural network and a decision tree model were used for the analysis. In this model, smoking, pain and discomfort from disease over the last two weeks, education level, occupation, and income were drawn out as major predictors of subjective voice disorders. In order to minimize the risk of dysphonia, it is necessary to establish a scientific management system for high-risk groups.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer