It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The electrical energy distribution uses a huge network to cover the urbanized areas. The network distribution incorporates an important number of electrical cells that ensure the energy transformation. These cells play a fundamental role to ensure a permanent feeding. Thus, the performance of these cells must be optimized. The main problem that affects these cells is the inside humidity that should be controlled permanently to prevent serious damage and power failure. The presented work proposes the use of a powerful intelligent Fuzzy Logic Controller that can online adapt their internal parameters according to the actually state of the controlled plant and auto-learn from the behavior of the plant how the current humidity level can be decreased. The used controller can stabilize the humidity inside the cells within the recommended range by controlling a set of heating resistances installed inside these cells and in the same time ensuring valuable advantages for the electrical energy distribution company. Unlike the rest of the controllers that are used to stabilize moisture. The intelligent controller used in these papers ensures a very precise control with very low power consumption which trains a very significant energy savings in each electrical cell. Knowing that the distribution network incorporates a very large number of electrical cells, the final savings balance would be a very high amount of energy that can be presented economically with significant savings on the electricity bills.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer