It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The conversion of CO2 by renewable power-generated hydrogen is a promising approach to a sustainable production of long-chain olefins (C4+=) which are currently produced from petroleum resources. The decentralized small-scale electrolysis for hydrogen generation requires the operation of CO2 hydrogenation in ambient-pressure units to match the manufacturing scales and flexible on-demand production. Herein, we report a Cu-Fe catalyst which is operated under ambient pressure with comparable C4+= selectivity (66.9%) to that of the state-of-the-art catalysts (66.8%) optimized under high pressure (35 bar). The catalyst is composed of copper, iron oxides, and iron carbides. Iron oxides enable reverse-water-gas-shift to produce CO. The synergy of carbide path over iron carbides and CO insertion path over interfacial sites between copper and iron carbides leads to efficient C-C coupling into C4+=. This work contributes to the development of small-scale low-pressure devices for CO2 hydrogenation compatible with sustainable hydrogen production.
The conversion of CO2 by renewable power-generated hydrogen is a promising approach to a sustainable production of long-chain olefins. Here the authors report a Cu-Fe catalyst which achieves the hydrogenation of CO2 into long-chain olefins under ambient pressure via the synergy of carbide mechanism and CO insertion mechanism.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 University of Science and Technology of China, Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, Hefei, PR China (GRID:grid.59053.3a) (ISNI:0000000121679639)
2 Songshan Lake Materials Laboratory, Dongguan, PR China (GRID:grid.511002.7); Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, PR China (GRID:grid.9227.e) (ISNI:0000000119573309)