It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Cities are a major source of atmospheric CO2; however, understanding the surface CO2 exchange processes that determine the net CO2 flux emitted from each city is challenging owing to the high heterogeneity of urban land use. Therefore, this study investigates the spatiotemporal variations of urban CO2 flux over the Seoul Capital Area, South Korea from 2017 to 2018, using CO2 flux measurements at nine sites with different urban land-use types (baseline, residential, old town residential, commercial, and vegetation areas).
Results
Annual CO2 flux significantly varied from 1.09 kg C m− 2 year− 1 at the baseline site to 16.28 kg C m− 2 year− 1 at the old town residential site in the Seoul Capital Area. Monthly CO2 flux variations were closely correlated with the vegetation activity (r = − 0.61) at all sites; however, its correlation with building energy usage differed for each land-use type (r = 0.72 at residential sites and r = 0.34 at commercial sites). Diurnal CO2 flux variations were mostly correlated with traffic volume at all sites (r = 0.8); however, its correlation with the floating population was the opposite at residential (r = − 0.44) and commercial (r = 0.80) sites. Additionally, the hourly CO2 flux was highly related to temperature. At the vegetation site, as the temperature exceeded 24 ℃, the sensitivity of CO2 absorption to temperature increased 7.44-fold than that at the previous temperature. Conversely, the CO2 flux of non-vegetation sites increased when the temperature was less than or exceeded the 18 ℃ baseline, being three-times more sensitive to cold temperatures than hot ones. On average, non-vegetation urban sites emitted 0.45 g C m− 2 h− 1 of CO2 throughout the year, regardless of the temperature.
Conclusions
Our results demonstrated that most urban areas acted as CO2 emission sources in all time zones; however, the CO2 flux characteristics varied extensively based on urban land-use types, even within cities. Therefore, multiple observations from various land-use types are essential for identifying the comprehensive CO2 cycle of each city to develop effective urban CO2 reduction policies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Seoul National University, Department of Environmental Planning, Graduate School of Environmental Studies, Seoul, Republic of Korea (GRID:grid.31501.36) (ISNI:0000 0004 0470 5905)
2 Sejong University, Department of Climate and Environment, Seoul, Republic of Korea (GRID:grid.263333.4) (ISNI:0000 0001 0727 6358)
3 National Institute of Meteorological Sciences, Jeju, Republic of Korea (GRID:grid.482505.e) (ISNI:0000 0004 0371 9491)