It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Terahertz (THz) near-field microscopy retains the advantages of THz radiation and realizes sub-wavelength imaging, which enables applications in fundamental research and industrial fields. In most THz near-field microscopies, the sample surface must be approached by a THz detector or source, which restricts the sample choice. Here, a technique was developed based on an air-plasma dynamic aperture, where two mutually perpendicular air-plasmas overlapped to form a cross-filament above a sample surface that modulated an incident THz beam. THz imaging with quasi sub-wavelength resolution (approximately λ/2, where λ is the wavelength of the THz beam) was thus observed without approaching the sample with any devices. Damage to the sample by the air-plasmas was avoided. Near-field imaging of four different materials was achieved, including metallic, semiconductor, plastic, and greasy samples. The resolution characteristics of the near-field system were investigated with experiment and theory. The advantages of the technique are expected to accelerate the advancement of THz microscopy.
A THz near-field technique was proposed based on an air-plasma dynamic aperture, which can achieve sub-wavelength THz imaging without approaching the sample with any devices.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Capital Normal University, Beijing Key Laboratory of Metamaterials and Devices, Key Laboratory of Terahertz Optoelectronics Ministry of Education, Department of Physics, Beijing, China (GRID:grid.253663.7) (ISNI:0000 0004 0368 505X)
2 Xian University of Technology, Applied Physics Department, Xian, China (GRID:grid.440722.7) (ISNI:0000 0000 9591 9677)