Full Text

Turn on search term navigation

© 2021. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Leaching of leaf litter is the primary source of dissolved organic matter (DOM) in forest soils. However, the interspecific variations of litter-derived DOM characteristics and biodegradation and their controlling factors remain unclear in subtropical plantations. Using fresh leaf litter of two broadleaf trees (Liquidambar formosana and Schima superba) and two coniferous trees (Pinus massoniana and P. elliottii) in subtropical plantations of China, we assessed the effects of tree species on the amounts and properties of litter-derived DOM with a short-term leaching experiment, and examined the interspecific variation of DOM biodegradation using a 56-day laboratory incubation method. Broadleaf tree litter generally leached higher amounts of dissolved organic carbon (DOC), dissolved total nitrogen (DTN), and dissolved total phosphorus (DTP) than coniferous tree litter. Compared with coniferous trees, broadleaf trees had higher DOM aromaticity and molecular weight, but lower DOC:DTP and DTN:DTP ratios in the litter leachates. Despite greater DOM aromaticity and molecular weight, broadleaf trees had higher litter-derived DOM biodegradation than coniferous trees because of the relatively lower DOC:DTP and DTN:DTP ratios. These results indicate the distinct patterns of litter-derived DOM characteristics and biodegradation between broadleaf and coniferous trees, and also highlight the predominant role of C:N:P stoichiometry in driving the interspecific variation of litter-derived DOM biodegradation in subtropical plantations of China.

Details

Title
Carbon, nitrogen and phosphorus stoichiometry controls interspecific patterns of leaf litter-derived dissolved organic matter biodegradation in subtropical plantations of China
Author
Pan-Pan, Wu  VIAFID ORCID Logo  ; Yi-Dong, Ding; Su-Li, Li; Zhang, Yun; Mao, Rong  VIAFID ORCID Logo  ; Xiao-Xin, Sun
Pages
80-85
Section
Research Articles
Publication year
2021
Publication date
2021
Publisher
The Italian Society of Silviculture and Forest Ecology (SISEF)
ISSN
19717458
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2661567722
Copyright
© 2021. This work is licensed under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.