Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Preterm birth (PTB) is a phenomenon that brings risks and challenges for the survival of the newborn child. Despite many advances in research, not all the causes of PTB are already clear. It is understood that PTB risk is multi-factorial and can also be associated with socioeconomic factors. Thereby, this article seeks to use unsupervised learning techniques to stratify PTB risk in Brazil using only socioeconomic data. Through the use of datasets made publicly available by the Federal Government of Brazil, a new dataset was generated with municipality-level socioeconomic data and a PTB occurrence rate. This dataset was processed using various unsupervised learning techniques, such as k-means, principal component analysis (PCA), and density-based spatial clustering of applications with noise (DBSCAN). After validation, four clusters with high levels of PTB occurrence were discovered, as well as three with low levels. The clusters with high PTB were comprised mostly of municipalities with lower levels of education, worse quality of public services—such as basic sanitation and garbage collection—and a less white population. The regional distribution of the clusters was also observed, with clusters of high PTB located mostly in the North and Northeast regions of Brazil. The results indicate a positive influence of the quality of life and the offer of public services on the reduction in PTB risk.

Details

Title
Unsupervised Learning Applied to the Stratification of Preterm Birth Risk in Brazil with Socioeconomic Data
Author
LopesJr, Márcio L B 1   VIAFID ORCID Logo  ; de M Barbosa, Raquel 2   VIAFID ORCID Logo  ; Fernandes, Marcelo A C 3   VIAFID ORCID Logo 

 Laboratory of Machine Learning and Intelligent Instrumentation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil; [email protected] 
 Department of Pharmacy and Pharmaceutical Technology, University of Granada, 18071 Granada, Spain; [email protected] 
 Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil 
First page
5596
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2662986527
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.