Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the advantages of high strength, light weight, high corrosion and fatigue resistance, and low relaxation, carbon-fiber-reinforced polymer (CFRP) is an excellent cable material for cable-stayed bridges. However, the relatively high unit price of CFRP compared to that of steel may hinder the large-scale application of CFRP stay cables. This paper presents the economic comparison between long-span cable-stayed bridges using CFRP cables and the corresponding steel cable-stayed bridges through life-cycle cost analysis (LCCA). Three CFRP cable-stayed bridges with a main span of 600 m, 1200 m, and 1800 m, respectively, along with their steel counterparts, were designed, and their life-cycle costs (LCCs) were calculated. The comparison of LCCs was not only between the CFRP and steel cable-stayed bridges with the same span, but also between the cable-stayed bridges with different spans. Furthermore, the different unit prices of CFRP cables and different replacement frequencies of steel cables were also investigated. The results show that the initial design and construction cost of the long-span CFRP cable-stayed bridge is higher than that of the corresponding steel cable-stayed bridge, although using CFRP cables can reduce the materials used, primarily due to the higher unit price of the CFRP cable. Despite the higher initial cost, the long-span CFRP cable-stayed bridge can still achieve lower LCC than the steel cable-stayed bridge, because it has significantly lower rehabilitation cost and user cost, as well as slightly lower vulnerability cost. Furthermore, with the increase in the main span and the decrease in the unit price of CFRP cables, the LCC advantage of the long-span CFRP cable-stayed bridge becomes more obvious.

Details

Title
Life-Cycle Cost Analysis of Long-Span CFRP Cable-Stayed Bridges
Author
Liu, Yue 1   VIAFID ORCID Logo  ; Gu, Mingyang 2 ; Liu, Xiaogang 1 ; Tafsirojjaman, T 3   VIAFID ORCID Logo 

 Research Institute of Urbanization and Urban Safety, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China; [email protected] 
 The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Pingleyuan Road 100, Beijing 100124, China; [email protected] 
 Centre for Future Materials (CFM), School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba, QLD 4350, Australia; [email protected] 
First page
1740
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2663097142
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.