Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work a plasmonic sensor with a D-Shaped microstructured optical fiber (MOF) is proposed to detect a wide range of analyte refractive index (RI ;na) by doping the pure silica (SiO2) core with distinct concentrations of Germanium Dioxide (GeO2), causing the presentation of high spectral sensitivity. In this case, the fiber is shaped by polishing a coating of SiO2, on the region that will be doped with GeO2, in the polished area, a thin gold (Au) layer, which constitutes the plasmonic material, is introduced, followed by the analyte, in a way which the gold layer is deposited between the SiO2. and the analyte. The numerical results obtained in the study shows that the sensor can determine efficiently a range of 0.13 refractive index units (RIU), with a limit operation where na varies from 1.32 to 1.45. Within this application, the sensor has reached an average wavelength sensitivity (WS) of up to 11,650.63 nm/RIU. With this level of sensitivity, the D-Shaped format and wide range of na detection, the proposed fiber has great potential for sensing applications in several areas.

Details

Title
High Sensitivity Surface Plasmon Resonance Sensor Based on a Ge-Doped Defect and D-Shaped Microstructured Optical Fiber
Author
Cunha, Nilson H O; da Silva, José P  VIAFID ORCID Logo 
First page
3220
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2663100794
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.