Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Focal onset epileptic seizures are highly heterogeneous in their clinical manifestations, and a robust seizure detection across patient cohorts has to date not been achieved. Here, we assess and discuss the potential of supervised machine learning models for the detection of focal onset motor seizures by means of a wrist-worn wearable device, both in a personalized context as well as across patients. Wearable data were recorded in-hospital from patients with epilepsy at two epilepsy centers. Accelerometry, electrodermal activity, and blood volume pulse data were processed and features for each of the biosignal modalities were calculated. Following a leave-one-out approach, a gradient tree boosting machine learning model was optimized and tested in an intra-subject and inter-subject evaluation. In total, 20 seizures from 9 patients were included and we report sensitivities of 67% to 100% and false alarm rates of down to 0.85 per 24 h in the individualized assessment. Conversely, for an inter-subject seizure detection methodology tested on an out-of-sample data set, an optimized model could only achieve a sensitivity of 75% at a false alarm rate of 13.4 per 24 h. We demonstrate that robustly detecting focal onset motor seizures with tonic or clonic movements from wearable data may be possible for individuals, depending on specific seizure manifestations.

Details

Title
Intra- and Inter-Subject Perspectives on the Detection of Focal Onset Motor Seizures in Epilepsy Patients
Author
Böttcher, Sebastian 1   VIAFID ORCID Logo  ; Bruno, Elisa 2   VIAFID ORCID Logo  ; Epitashvili, Nino 3   VIAFID ORCID Logo  ; Dümpelmann, Matthias 4   VIAFID ORCID Logo  ; Zabler, Nicolas 3   VIAFID ORCID Logo  ; Glasstetter, Martin 3   VIAFID ORCID Logo  ; Ticcinelli, Valentina 5   VIAFID ORCID Logo  ; Thorpe, Sarah 6   VIAFID ORCID Logo  ; Lees, Simon 6   VIAFID ORCID Logo  ; Kristof Van Laerhoven 7   VIAFID ORCID Logo  ; Richardson, Mark P 2   VIAFID ORCID Logo  ; Schulze-Bonhage, Andreas 4   VIAFID ORCID Logo 

 Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, 79106 Freiburg im Breisgau, Germany; [email protected] (N.E.); [email protected] (M.D.); [email protected] (N.Z.); [email protected] (M.G.); [email protected] (A.S.-B.); Ubiquitous Computing, Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany; [email protected]; The RADAR-CNS Consortium, London WC2R 2LS, UK; [email protected] (E.B.); [email protected] (V.T.); [email protected] (S.T.); [email protected] (S.L.); [email protected] (M.P.R.) 
 The RADAR-CNS Consortium, London WC2R 2LS, UK; [email protected] (E.B.); [email protected] (V.T.); [email protected] (S.T.); [email protected] (S.L.); [email protected] (M.P.R.); Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London SE5 9RT, UK 
 Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, 79106 Freiburg im Breisgau, Germany; [email protected] (N.E.); [email protected] (M.D.); [email protected] (N.Z.); [email protected] (M.G.); [email protected] (A.S.-B.) 
 Epilepsy Center, Department of Neurosurgery, Medical Center—University of Freiburg, 79106 Freiburg im Breisgau, Germany; [email protected] (N.E.); [email protected] (M.D.); [email protected] (N.Z.); [email protected] (M.G.); [email protected] (A.S.-B.); The RADAR-CNS Consortium, London WC2R 2LS, UK; [email protected] (E.B.); [email protected] (V.T.); [email protected] (S.T.); [email protected] (S.L.); [email protected] (M.P.R.) 
 The RADAR-CNS Consortium, London WC2R 2LS, UK; [email protected] (E.B.); [email protected] (V.T.); [email protected] (S.T.); [email protected] (S.L.); [email protected] (M.P.R.); UCB Pharma, 1070 Anderlecht, Belgium 
 The RADAR-CNS Consortium, London WC2R 2LS, UK; [email protected] (E.B.); [email protected] (V.T.); [email protected] (S.T.); [email protected] (S.L.); [email protected] (M.P.R.); The RADAR-CNS Patient Advisory Board, King’s College London, London WC2R 2LS, UK 
 Ubiquitous Computing, Department of Electrical Engineering and Computer Science, University of Siegen, 57076 Siegen, Germany; [email protected] 
First page
3318
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2663108699
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.