It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The fermionic dark matter (DM) absorption by nucleus or electron targets provides a distinctive signal to search for sub-GeV DM. We consider a Dirac fermion DM charged under a dark gauge group and with the dark magnetic dipole operator. The DM field mixes with right-handed neutrino and interacts with the ordinary electromagnetic charge current via the kinetic mixing term of gauge fields. As a result, the incoming DM is absorbed and converted into neutrino in final state through the dipole-charge interaction. For the DM absorption by nucleus, the recoil energy spectrum exhibit a peak at
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Nankai University, School of Physics, Tianjin, China (GRID:grid.216938.7) (ISNI:0000 0000 9878 7032)
2 Sun Yat-Sen University, School of Physics, Guangzhou, China (GRID:grid.12981.33) (ISNI:0000 0001 2360 039X)