It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Efficient terahertz generation and detection are a key prerequisite for high performance terahertz systems. Major advancements in realizing efficient terahertz emitters and detectors were enabled through photonics-driven semiconductor devices, thanks to the extremely wide bandwidth available at optical frequencies. Through the efficient generation and ultrafast transport of charge carriers within a photo-absorbing semiconductor material, terahertz frequency components are created from the mixing products of the optical frequency components that drive the terahertz device – a process usually referred to as photomixing. The created terahertz frequency components, which are in the physical form of oscillating carrier concentrations, can feed a terahertz antenna and get radiated in case of a terahertz emitter, or mix with an incoming terahertz wave to down-convert to DC or to a low frequency photocurrent in case of a terahertz detector. Realizing terahertz photoconductors typically relies on short-carrier-lifetime semiconductors as the photo-absorbing material, where photocarriers are quickly trapped within one picosecond or less after generation, leading to ultrafast carrier dynamics that facilitates high-frequency device operation. However, while enabling broadband operation, a sub-picosecond lifetime of the photocarriers results in a substantial loss of photoconductive gain and optical responsivity. In addition, growth of short-carrier-lifetime semiconductors in many cases relies on the use of rare elements and non-standard processes with limited accessibility. Therefore, there is a strong motivation to explore and develop alternative techniques for realizing terahertz photomixers that do not rely on these defect-introduced short-carrier-lifetime semiconductors. This review will provide an overview of several promising approaches to realize terahertz emitters and detectors without short-carrier-lifetime semiconductors. These novel approaches utilize p-i-n diode junctions, plasmonic nanostructures, ultrafast spintronics, and low-dimensional materials to offer ultrafast carrier response. These innovative directions have great potentials for extending the applicability and accessibility of the terahertz spectrum for a wide range of applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA
2 Department of Electrical Engineering and Information Technology, Technical University Darmstadt, Darmstadt, Germany
3 Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany
4 Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany; Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany