It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper we use the covariant Peierls bracket to compute the algebra of a sizable number of diffeomorphism-invariant observables in classical Jackiw-Teitelboim gravity coupled to fairly arbitrary matter. We then show that many recent results, including the construction of traversable wormholes, the existence of a family of SL(2, ℝ) algebras acting on the matter fields, and the calculation of the scrambling time, can be recast as simple consequences of this algebra. We also use it to clarify the question of when the creation of an excitation deep in the bulk increases or decreases the boundary energy, which is of crucial importance for the “typical state” versions of the firewall paradox. Unlike the “Schwarzian” or “boundary particle” formalism, our techniques involve no unphysical degrees of freedom and naturally generalize to higher dimensions. We do a few higher-dimensional calculations to illustrate this, which indicate that the results we obtain in JT gravity are fairly robust.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Massachusetts Institute of Technology, Center for Theoretical Physics, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786)
2 Massachusetts Institute of Technology, Center for Theoretical Physics, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786); University of California, Department of Physics, Santa Barbara, USA (GRID:grid.133342.4) (ISNI:0000 0004 1936 9676)