It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The purpose of this study is to develop and validate an optimal timing protocol for a low-radiation-dose CT pulmonary perfusion technique using only two volume scans. A total of 24 swine (48.5 ± 14.3 kg) underwent contrast-enhanced dynamic CT. Multiple contrast injections were made under different pulmonary perfusion conditions, resulting in a total of 141 complete pulmonary arterial input functions (AIFs). Using all the AIF curves, an optimal contrast timing protocol was developed for a first-pass, two-volume dynamic CT perfusion technique (one at the base and the other at the peak of AIF curve). A subset of swine was used to validate the prospective two-volume pulmonary perfusion technique. The prospective two-volume perfusion measurements were quantitatively compared to the previously validated retrospective perfusion measurements with t-test, linear regression, and Bland–Altman analysis. As a result, the pulmonary artery time-to-peak (
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of California, Irvine, Department of Radiological Sciences, Medical Sciences I, B-140, Irvine, USA (GRID:grid.266093.8) (ISNI:0000 0001 0668 7243)