It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In recent years, the safety of Codonopsis Radix (CR) has attracted considerable attention. Pesticide residues is an important index to evaluate the safety of CR. The purpose of this study was to monitor pesticide residues in 164 batches of CR in China and assess dietary risk assessment. Firstly, a combined method of QuEChERS-GC–MS/MS and QuEChERS-LC–MS/MS was established for determination of 155 pesticide residues in CR. Second, 155 Pesticide residues in 3 CR cultivars from Gansu, Shanxi, Hubei, Guizhou and Chongqing were determined by this method. Finally, the risk score of pesticide residues in CR was evaluated, and the dietary health risk was evaluated based on the pesticide residues in CR. The results demonstrated that one or more pesticide residues were detected in 39 batches (23.78%) of 164 batches of CR. Of the 155 pesticide residues, 20 were detected. The most frequently detected pesticide residue was dimethomorph with a detection rate of 5.49%. Risk scores showed that 6 pesticides were at higher risk. Risk assessment based on the hazard quotient/hazard index (HQ/HI) approach revealed that exposure to pesticide residues which detected in CR were far below levels that might pose a health risk.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Lanzhou University, The State Key Laboratory of Applied Organic Chemistry (SKLAOC), School of Pharmacy, Lanzhou, China (GRID:grid.32566.34) (ISNI:0000 0000 8571 0482)