It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A landform is any physical feature of the earth's surface having a characteristic, recognizable shape. Most landform identification methods rely on OBIA (Object-Based Image Analysis) techniques to segment the terrain data and classify segments into objects that are assumed to compose the landform. However, geomorphologists can visually recognize any landform, considering the characteristics of the surrounding environment that plays the role of context. This notion of context was not considered in previous landform identification methods. We propose to model it using the notion of landsystem. Landsystems are geomorphologic elements that result from a set of natural geomorphological processes. They are also easily recognized by geomorphologists. In this paper, we present a new knowledge-based method to automatically identify landsystems as the context for landform identification. We first present a conceptual model as a core ontology of geomorphologic elements including landsystems and landforms, capturing relevant geomorphologists’ knowledge. Then, we present how this model is extended to create a domain ontology for a chosen domain in geomorphology. We illustrate such an extension for the case of mountainous glacial valleys. We used the graph database engine Neo4J to implement the domain ontology and to develop a knowledge-based system (a framework) to automatically identify landsystems from spatial datasets. We present the architecture of our framework and discuss how it is used to support: 1) the knowledge acquisition tasks; 2) the spatial data preparation task; 3) the processing of the user’s request seeking landsystems in a chosen study area.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Dept. of Geomatics Sciences, Laval University, Québec, G1V 0A6 (QC), Canada; Dept. of Geomatics Sciences, Laval University, Québec, G1V 0A6 (QC), Canada
2 Professor Emeritus, Dept. of Computer Science and Software Engineering, Laval University, Québec, G1V 0A6 (QC), Canada; Professor Emeritus, Dept. of Computer Science and Software Engineering, Laval University, Québec, G1V 0A6 (QC), Canada