It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Diabetes mellitus (DM) and coronary artery disease (CAD) constitute inter-related clinical entities. Biomarker profiling emerges as a promising tool for the early diagnosis and risk stratification of either DM or CAD. However, studies assessing the predictive capacity of novel metabolomics biomarkers in coexistent CAD and DM are scarce.
Methods
This post-hoc analysis of the CorLipid trial (NCT04580173) included 316 patients with CAD and comorbid DM who underwent emergency or elective coronary angiography due to acute or chronic coronary syndrome. Cox regression analyses were performed to identify metabolomic predictors of the primary outcome, which was defined as the composite of major adverse cardiovascular or cerebrovascular events (MACCE: cardiovascular death, myocardial infarction, stroke, major bleeding), repeat unplanned revascularizations and cardiovascular hospitalizations. Linear regression analyses were also performed to detect significant predictors of CAD complexity, as assessed by the SYNTAX score.
Results
After a median 2-year follow up period (IQR = 0.7 years), the primary outcome occurred in 69 (21.8%) of patients. Acylcarnitine ratio C4/C18:2, apolipoprotein (apo) B, history of heart failure (HF), age > 65 years and presence of acute coronary syndrome were independent predictors of the primary outcome in diabetic patients with CAD (aHR = 1.89 [1.09, 3.29]; 1.02 [1.01, 1.04]; 1.28 [1.01, 1.41]; 1.04 [1.01, 1.05]; and 1.12 [1.05–1.21], respectively). Higher levels of ceramide ratio C24:1/C24:0, acylcarnitine ratio C4/C18:2, age > 65 and peripheral artery disease were independent predictors of higher CAD complexity (adjusted β = 7.36 [5.74, 20.47]; 3.02 [0.09 to 6.06]; 3.02 [0.09, 6.06], respectively), while higher levels of apoA1 were independent predictors of lower complexity (adjusted β= − 0.65 [− 1.31, − 0.02]).
Conclusions
In patients with comorbid DM and CAD, novel metabolomic biomarkers and metabolomics-based prediction models could be recruited to predict clinical outcomes and assess the complexity of CAD, thereby enabling the integration of personalized medicine into routine clinical practice. These associations should be interpreted taking into account the observational nature of this study, and thus, larger trials are needed to confirm its results and validate them in different and larger diabetic populations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer