It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Plant growth-promoting rhizobacteria (PGPR) release volatile organic compounds (VOCs), which promote plant growth.
Results
A potential PGPR strain GX14001 was isolated from marine samples, and the VOCs produced by GX14001 significantly promoted tobacco (Nicotiana benthamiana) growth in a plate experiment. Based on 16S rRNA sequence alignment and physiological and biochemical characterization, GX14001 was identified as Microbacterium aurantiacum. Comparative transcriptome analysis was conducted between GX14001 VOCs-treated tobacco and the control; it was found that 1286 genes were upregulated and 1088 genes were downregulated. Gene ontology (GO) analysis showed that upregulated genes were involved in three biological processes: polysaccharide metabolic, polysaccharide catabolic and carbohydrate metabolic. The downregulated genes were involved in six biological processes, namely cell redox homeostasis, cellular homeostasis, carbohydrate metabolic process, homeostatic process, obsolete electron transport, and regulation of biological quality. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that 190 upregulated differentially expressed genes were mainly involved in plant hormone signal transduction, phenylpropyl biosynthesis, plant–pathogen interaction, and flavonoid biosynthesis. The 148 downregulated differentially expressed genes were mainly involved in plant hormone signal transduction and the metabolism of ascorbic, aldehyde, and pyruvate acids. Further analysis revealed that many genes were differentially expressed in the metabolic pathways of plant hormone signals, which were speculated to be the main reason why GX14001 VOCs promoted tobacco growth. To further study its regulatory mechanism, we found that GX14001 promoted plant growth through auxin, salicylic acid, and gibberellin in Arabidopsis mutant experiments.
Conclusion
The VOCs produced by Microbacterium aurantiacum GX14001 may promote the growth of tobacco through the auxin, salicylic acid and gibberellin pathways.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer