It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Creeping bentgrass (Agrostis soionifera) is a perennial grass of Gramineae, belonging to cold season turfgrass, but has poor disease resistance. Up to now, little is known about the induced systemic resistance (ISR) mechanism, especially the relevant functional proteins, which is important to disease resistance of turfgrass. Achieving more information of proteins of infected creeping bentgrass is helpful to understand the ISR mechanism.
Results
With BDO treatment, creeping bentgrass seedlings were grown, and the ISR response was induced by infecting Rhizoctonia solani. High-quality protein sequences of creeping bentgrass seedlings were obtained. Some of protein sequences were functionally annotated according to the database alignment while a large part of the obtained protein sequences was left non-annotated. To treat the non-annotated sequences, a prediction model based on convolutional neural network was established with the dataset from Uniport database in three domains to acquire good performance, especially the higher false positive control rate. With established model, the non-annotated protein sequences of creeping bentgrass were analyzed to annotate proteins relevant to disease-resistance response and signal transduction.
Conclusions
The prediction model based on convolutional neural network was successfully applied to select good candidates of the proteins with functions relevant to the ISR mechanism from the protein sequences which cannot be annotated by database alignment. The waste of sequence data can be avoided, and research time and labor will be saved in further research of protein of creeping bentgrass by molecular biology technology. It also provides reference for other sequence analysis of turfgrass disease-resistance research.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer