It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The yeast genus Komagataella currently consists of seven methylotrophic species isolated from tree environments. Well-characterized strains of K. phaffii and K. pastoris are important hosts for biotechnological applications, but the potential of other species from the genus remains largely unexplored. In this study, we characterized 25 natural isolates from all seven described Komagataella species to identify interesting traits and provide a comprehensive overview of the genotypic and phenotypic diversity available within this genus.
Results
Growth tests on different carbon sources and in the presence of stressors at two different temperatures allowed us to identify strains with differences in tolerance to high pH, high temperature, and growth on xylose. As Komagataella species are generally not considered xylose-utilizing yeasts, xylose assimilation was characterized in detail. Growth assays, enzyme activity measurements and 13C labeling confirmed the ability of K. phaffii to utilize D-xylose via the oxidoreductase pathway. In addition, we performed long-read whole-genome sequencing to generate genome assemblies of all Komagataella species type strains and additional K. phaffii and K. pastoris isolates for comparative analysis. All sequenced genomes have a similar size and share 83–99% average sequence identity. Genome structure analysis showed that K. pastoris and K. ulmi share the same rearrangements in difference to K. phaffii, while the genome structure of K. kurtzmanii is similar to K. phaffii. The genomes of the other, more distant species showed a larger number of structural differences. Moreover, we used the newly assembled genomes to identify putative orthologs of important xylose-related genes in the different Komagataella species.
Conclusions
By characterizing the phenotypes of 25 natural Komagataella isolates, we could identify strains with improved growth on different relevant carbon sources and stress conditions. Our data on the phenotypic and genotypic diversity will provide the basis for the use of so-far neglected Komagataella strains with interesting characteristics and the elucidation of the genetic determinants of improved growth and stress tolerance for targeted strain improvement.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer