Abstract

Blind-structured illumination microscopy (blind-SIM) enhances the optical resolution without the requirement of nonlinear effects or pre-defined illumination patterns. It is thus advantageous in experimental conditions where toxicity or biological fluctuations are an issue. In this work, we introduce a custom convolutional neural network architecture for blind-SIM: BS-CNN. We show that BS-CNN outperforms other blind-SIM deconvolution algorithms providing a resolution improvement of 2.17 together with a very high Fidelity (artifacts reduction). Furthermore, BS-CNN proves to be robust in cross-database variability: it is trained on synthetically augmented open-source data and evaluated on experiments. This approach paves the way to the employment of CNN-based deconvolution in all scenarios in which a statistical model for the illumination is available while the specific realizations are unknown or noisy.

Details

Title
Deep learning for blind structured illumination microscopy
Author
Xypakis Emmanouil 1 ; Gosti Giorgio 2 ; Giordani Taira 3 ; Santagati Raffaele 4 ; Ruocco Giancarlo 5 ; Leonetti, Marco 6 

 Istituto Italiano di Tecnologia, Center for Life Nano- and Neuro-Science, Rome, Italy (GRID:grid.25786.3e) (ISNI:0000 0004 1764 2907); D-TAILS srl, Rome, Italy (GRID:grid.25786.3e) 
 Istituto Italiano di Tecnologia, Center for Life Nano- and Neuro-Science, Rome, Italy (GRID:grid.25786.3e) (ISNI:0000 0004 1764 2907); Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, Soft and Living Matter Laboratory, Rome, Italy (GRID:grid.5326.2) (ISNI:0000 0001 1940 4177) 
 Istituto Italiano di Tecnologia, Center for Life Nano- and Neuro-Science, Rome, Italy (GRID:grid.25786.3e) (ISNI:0000 0004 1764 2907); Sapienza Università di Roma, Dipartimento di Fisica, Rome, Italy (GRID:grid.7841.a) 
 University of Bristol, Quantum Engineering Technology Labs, Bristol, UK (GRID:grid.5337.2) (ISNI:0000 0004 1936 7603); Boehringer-Ingelheim, Quantum Lab, Wien, Austria (GRID:grid.486422.e) (ISNI:0000000405446183) 
 Istituto Italiano di Tecnologia, Center for Life Nano- and Neuro-Science, Rome, Italy (GRID:grid.25786.3e) (ISNI:0000 0004 1764 2907) 
 Istituto Italiano di Tecnologia, Center for Life Nano- and Neuro-Science, Rome, Italy (GRID:grid.25786.3e) (ISNI:0000 0004 1764 2907); D-TAILS srl, Rome, Italy (GRID:grid.25786.3e); Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, Soft and Living Matter Laboratory, Rome, Italy (GRID:grid.5326.2) (ISNI:0000 0001 1940 4177) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2667319696
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.