Full text

Turn on search term navigation

Copyright © 2022 Dipak Debbarma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

High-temperature gradient causes thermal stress and is indirectly responsible for other demerits in nonstacked microchannels. High-temperature gradient is overcome by employing double layers in the heat sink. Utilization of dimple and protrusion in such double-layered sink to enhance overall performance is done in the present numerical study. Before placement of dimples and protrusions on sidewalls of the sink, optimum width and depth of channel have been assessed. Microsinks with the protruded-dimpled bottom layer and microsinks with protruded-dimpled layers are investigated. The parameters such as maximum bottom wall temperature difference (ΔTb), Nusselt number ratio (Nu/Nuo), and thermal performance factor (η) have been evaluated. The impact of aligned and staggered arrangements of dimple and protrusion is also compared. Deionized water as a coolant for the range of Reynolds number of 89–924 is examined. It has been realized that aligned models offer higher heat transfer coefficient, maximum Nu, and minimum ΔTb, but in terms of overall performance, staggered sinks are superior. The heat sink with both layers protruded and dimpled, showing Nu/Nuo and η of 1.36 and 1.32, respectively, is observed as one of the optimum sinks which offers an excellent lowest ΔTb of 1.48 K.

Details

Title
Performance Enhancement of Double-Layer Microchannel Heat Sink by Employing Dimples and Protrusions on Channel Sidewalls
Author
Debbarma, Dipak 1   VIAFID ORCID Logo  ; Krishna Murari Pandey 1   VIAFID ORCID Logo  ; Paul, Abhishek 1   VIAFID ORCID Logo 

 Mechanical Engineering Department, National Institute of Technology, Silchar 788010, India 
Editor
Taseer Muhammad
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2667631364
Copyright
Copyright © 2022 Dipak Debbarma et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/