It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
To test the feasibility of using profilometers to extract information about IOL surfaces design. A standard monofocal IOL (Tecnis 1), a monofocal IOL that provided some depth of focus (Eyhance), an extended depth of focus IOL based on refractive optics (Mini Well) and a trifocal IOL based on diffractive optics were used in this study (Tecnis Synergy). The surface topography of the IOLs was measured by using a multimode optical profilometer. Posterior surface of Tecnis 1 IOL was spherical and the anterior surface aspherical. In the Eyhance IOL, posterior surface was spherical and anterior surface did not fit to any of our reference surfaces, indicating a higher order aspheric surface design. In the Mini Well Ready IOL, a best-fit sphere surface was obtained for the second surface and a high order aspherical surface design was deduced for the first surface. The anterior surface of the Synergy IOL was aspherical and the base curve of the diffractive structure fitted very well to a spherical surface. To consider an aspheric surface as possible best-fit surface provided more information than if only best-fit spherical surface was considered. The high order aspheric surface designs employed in the IOLs studied presented differences, regarding best-fit asphere surface, higher than 1 micron. These differences were correlated with the generation of spherical aberration complex profiles (with Zernike terms higher than 4th order) and with the production of distinct amounts of depth of focus. This method was also useful to deduce the base curve of diffractive surfaces.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Alicante, Group of Optics and Visual Perception, Department of Optics, Pharmacology and Anatomy, Alicante, Spain (GRID:grid.5268.9) (ISNI:0000 0001 2168 1800)
2 University of Cadiz, Department of Condensed Matter Physics, Faculty of Sciences, Cadiz, Spain (GRID:grid.7759.c) (ISNI:0000000103580096)