Abstract

Despite the fact that the cell cycle is a fundamental process of life, a detailed quantitative understanding of gene regulation dynamics throughout the cell cycle is far from complete. Single-cell RNA-sequencing (scRNA-seq) technology gives access to these dynamics without externally perturbing the cell. Here, by generating scRNA-seq libraries in different cell systems, we observe cycling patterns in the unspliced-spliced RNA space of cell cycle-related genes. Since existing methods to analyze scRNA-seq are not efficient to measure cycling gene dynamics, we propose a deep learning approach (DeepCycle) to fit these patterns and build a high-resolution map of the entire cell cycle transcriptome. Characterizing the cell cycle in embryonic and somatic cells, we identify major waves of transcription during the G1 phase and systematically study the stages of the cell cycle. Our work will facilitate the study of the cell cycle in multiple cellular models and different biological contexts.

Single-cell RNA-sequencing technology gives access to cell cycle dynamics without externally perturbing the cell. Here the authors present DeepCycle,a robust deep learning method to infer the cell cycle state in single cells from scRNA-seq data.

Details

Title
Cell cycle gene regulation dynamics revealed by RNA velocity and deep-learning
Author
Riba, Andrea 1 ; Oravecz Attila 1 ; Durik Matej 1 ; Jiménez, Sara 1 ; Alunni Violaine 1 ; Cerciat Marie 1 ; Jung, Matthieu 1 ; Keime Céline 1   VIAFID ORCID Logo  ; Keyes, William M 1 ; Molina Nacho 1   VIAFID ORCID Logo 

 Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC); Université de Strasbourg; Centre National de la Recherche Scientifique (CNRS) UMR 7104; Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-S 1258, Illkirch, France (GRID:grid.420255.4) (ISNI:0000 0004 0638 2716) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2667967999
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.