Full Text

Turn on search term navigation

Copyright © 2023, Sahu et al. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

One of the prominent reasons for mortality and morbidity worldwide is coronary artery disease (CAD), an ailment that manifests itself by the narrowing of the artery with the deposition of plaque. The definitive mode of action for dealing with this condition is using a medical device known as a stent at the affected location. This extremely important tubular equipment helps tremendously with vessel support. It also helps by keeping the path of blood flow clear for the heart muscle masses, its crucial nutrients, and oxygen supply. Several generations of stents have been continuously developed to improve patient outcomes and reduce side effects post-stent implantation. As we move from bare metal stents (BMSs) to drug-eluting stents (DESs) and, more recently, to bioabsorbable stents, the research area continues to develop. The use of this biomedical device has increased the standard of living in many cases; therefore, it is much needed to work on the possible growth areas in the cardiovascular stents and improve them to such an extent that the patients suffering from cardiovascular ailments get to live a comfortable life. Most articles deal with stents that are available for current use and their various types. They also cover the topic of stent optimization, as it is one of the key factors in enhancing stent usability and plays a prominent role in optimizing stent placement in the vessels of the body. To keep in touch with advances in stent technology over the past few decades, this article reviews advances in the devices, working on how available stents can be optimized to create new stents.

Details

Title
Cardiovascular Stents: Types and Future Landscape
Author
Sahu, Rohit A; Nashine Aparna; Mudey Abhay; Sahu, Shreya A; Prasad Roshan
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2023
Publication date
2023
Publisher
Cureus Inc.
e-ISSN
21688184
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2870672054
Copyright
Copyright © 2023, Sahu et al. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.