Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, a new pruning strategy based on the neuroplasticity of biological neural networks is presented. The novel pruning algorithm proposed is inspired by the knowledge remapping ability after injuries in the cerebral cortex. Thus, it is proposed to simulate induced injuries into the network by pruning full convolutional layers or entire blocks, assuming that the knowledge from the removed segments of the network may be remapped and compressed during the recovery (retraining) process. To reconnect the remaining segments of the network, a translator block is introduced. The translator is composed of a pooling layer and a convolutional layer. The pooling layer is optional and placed to ensure that the spatial dimension of the feature maps matches across the pruned segments. After that, a convolutional layer (simulating the intact cortex) is placed to ensure that the depth of the feature maps matches and is used to remap the removed knowledge. As a result, lightweight, efficient and accurate sub-networks are created from the base models. Comparison analysis shows that in our approach is not necessary to define a threshold or metric as the criterion to prune the network in contrast to other pruning methods. Instead, only the origin and destination of the prune and reconnection points must be determined for the translator connection.

Details

Title
Neuroplasticity-Based Pruning Method for Deep Convolutional Neural Networks
Author
Camacho, Jose David  VIAFID ORCID Logo  ; Villaseñor, Carlos; Lopez-Franco, Carlos; Arana-Daniel, Nancy  VIAFID ORCID Logo 
First page
4945
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670075024
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.