Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a tracking control scheme for nonlinear systems with input constraints by combining the continuous-time model predictive control and the feedback linearization. Although there are some similar combinations for nonlinear systems presented in literature, their formulations are complex and massive computations are unavoidable. This study aims to simplify the formulations and reduce the computational loads by imposing the Laguerre functions to approximate the control signals. Since the Laguerre functions have the property of orthogonality, the tracking control problem, by applying the combination, leads to a constrained quadratic optimization problem in terms of the coefficients associated with the Laguerre functions, where the input constraints are converted so as to be state-dependent, based on feedback linearization. The Hildreth’s quadratic programming algorithm is used to solve the optimization problem, so as to determine the coefficients. Moreover, this study also summarizes some common linearization schemes and shows their pros and cons. Furthermore, the proposed approach is applied to two illustrative examples, and the control performances are compared with those by linear control strategies combined with those linearization schemes.

Details

Title
Continuous-Time Nonlinear Model Predictive Tracking Control with Input Constraints Using Feedback Linearization
Author
Yong-Lin, Kuo 1   VIAFID ORCID Logo  ; Pongpanyaporn, Peeraya 2 

 Graduate Institute of Automation and Control, National Taiwan University of Science and Technology, Taipei 106, Taiwan; [email protected]; Center of Automation and Control, National Taiwan University of Science and Technology, Taipei 106, Taiwan 
 Graduate Institute of Automation and Control, National Taiwan University of Science and Technology, Taipei 106, Taiwan; [email protected] 
First page
5016
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670076758
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.