Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

The rapid increase of the world population has promoted a more sustainable and efficient use of natural resources. To achieve complete and proper upcycling of plant crops, it is important to know their potential for industrial exploitation. Cardoon (Cynara cardunculus L.) is a species native to the Mediterranean basin widely used in different sectors, including food and pharmaceuticals. Despite their multiple industrial applications, not all plant tissues have been incorporated into the value chain. Therefore, this work aimed to characterize the phenolic composition and bioactive properties of cardoon blades throughout the phenological growth cycle. In addition to the structural variety of phytochemicals detected in the blade extracts, their antioxidant, anti-inflammatory, anti-proliferative, and antimicrobial properties were also highlighted. While immature material showed higher levels of phenolic compounds and greater potential to inhibit lipid peroxidation, samples at higher development stages had greater anti-proliferative, anti-inflammatory, and antimicrobial potential. These results demonstrate that the growth cycle influences the bioactive potential of cardoon blades and will be useful to establish suitable industrial applications, such as the development of ingredients for functional foods and nutraceuticals, among other products.

Abstract

Cardoon (Cynara cardunculus var. altilis) blades were collected at sixteen sampling dates (B1–B16) to study the influence of the phenological growth stage on the phenolic composition and biological properties. Twenty phenolic compounds were identified, among which trans 3,4-O-dicaffeoylquinic acid, 5-O-caffeoylquinic acid, and luteolin-O-hexoside (39.6, 42.6, and 101.0 mg/g extract, respectively) were the main compounds. Immature blades (B3) had a higher content of phenolic compounds (178 mg/g extract) and a greater ability to inhibit the formation of thiobarbituric acid reactive substances (IC50 of 1.61 µg/mL). Samples at more advanced growth stages revealed a greater capacity to inhibit oxidative hemolysis (B8, IC50 of 25 and 47.4 µg/mL for Δt of 60 and 120 min, respectively) and higher cytotoxic (B8–B13, GI50 between 7.1 and 17 µg/mL), anti-inflammatory (B13, IC50 of 10 µg/mL), and antibacterial activities. In turn, the antifungal activity varied depending on the tested fungi. All these results suggest that maturity influences the phenolic composition and bioactive properties of cardoon blades, which reveal great potential for the development of bioactive ingredients for food and pharmaceutical applications, among others.

Details

Title
Phenolic Composition and Antioxidant, Anti-Inflammatory, Cytotoxic, and Antimicrobial Activities of Cardoon Blades at Different Growth Stages
Author
Mandim, Filipa 1   VIAFID ORCID Logo  ; Petropoulos, Spyridon A 2   VIAFID ORCID Logo  ; Pinela, José 3   VIAFID ORCID Logo  ; Dias, Maria Inês 3   VIAFID ORCID Logo  ; Kostic, Marina 4   VIAFID ORCID Logo  ; Soković, Marina 4   VIAFID ORCID Logo  ; Isabel C F R Ferreira 3   VIAFID ORCID Logo  ; Santos-Buelga, Celestino 5   VIAFID ORCID Logo  ; Barros, Lillian 3   VIAFID ORCID Logo 

 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; [email protected] (F.M.); [email protected] (J.P.); [email protected] (M.I.D.); [email protected] (I.C.F.R.F.); Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain; [email protected] 
 Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, 38446 Volos, Greece 
 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; [email protected] (F.M.); [email protected] (J.P.); [email protected] (M.I.D.); [email protected] (I.C.F.R.F.) 
 Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; [email protected] (M.K.); [email protected] (M.S.) 
 Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain; [email protected] 
First page
699
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20797737
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670101151
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.