Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Earth observation technologies offer non-intrusive solutions for monitoring complex and risky sites, such as landfills. In particular, unmanned aerial vehicles (UAVs) offer the ability to acquire data at very high spatial resolution, with full control of the temporality required for the desired application. The versatility of UAVs, both in terms of flight characteristics and on-board sensors, makes it possible to generate relevant geodata for a wide range of landfill monitoring activities. This study aims to propose a robust tool and to provide data acquisition guidelines for the land cover mapping of complex sites using UAV multispectral imagery. For this purpose, the transferability of a state-of-the-art object-based image analysis open-source processing chain was assessed and its sensitivity to the segmentation approach, textural and contextual information, spectral and spatial resolution was tested over the landfill site of Hallembaye (Wallonia, Belgium). This study proposes a consistent open-source processing chain for the land cover mapping using UAV data with accuracies of at least 85%. It shows that low-cost red-green-blue standard sensors are sufficient to reach such accuracies and that spatial resolution of up to 10 cm can be adopted with limited impact on the performance of the processing chain. This study also results in the creation of a new operational service for the monitoring of the active landfill sites of Wallonia.

Details

Title
UAV-Based Landfill Land Cover Mapping: Optimizing Data Acquisition and Open-Source Processing Protocols
Author
Wyard, Coraline 1   VIAFID ORCID Logo  ; Beaumont, Benjamin 1   VIAFID ORCID Logo  ; Grippa, Taïs 2   VIAFID ORCID Logo  ; Hallot, Eric 1 

 Remote Sensing and Geodata Unit, Institut Scientifique de Service Public (ISSeP), 4000 Liège, Belgium; [email protected] (B.B.); [email protected] (E.H.) 
 ANAGEO, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; [email protected] 
First page
123
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2504446X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670117077
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.