Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aiming at the influence of friction, leakage, noise and other nonlinear factors on the performance of the electro-hydraulic servo system of a continuous rotary motor, a finite-time composite controller for the aforementioned servo system is proposed. First, a mathematical model of the electro-hydraulic servo system was analyzed, and the input and output angle data of the motor were collected for system identification. Subsequently, the ARMAX identification model of the continuous rotary motor system was obtained. Then, according to the observed advantages, namely faster capability of the finite-time controller (FTC) to converge the system, and ability of the finite-time observer to reduce the steady-state error of the system, the finite-time controller and finite-time state observer of a continuous rotary electro-hydraulic servo motor were respectively designed. Finally, comparison with PID control simulation shows that the compound controller could effectively improve the control accuracy and performance of the system.

Details

Title
Research on the Finite Time Compound Control of Continuous Rotary Motor Electro-Hydraulic Servo System
Author
Xiao-Jing, Wang 1   VIAFID ORCID Logo  ; Qi-Zheng, Zhang 2 ; Chun-Hui, Li 2 

 School of Mechanical-Electronic and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China 
 School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China; [email protected] (Q.-Z.Z.); [email protected] (C.-H.L.) 
First page
1515
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670124050
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.