Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Chemical components are one of the most significant traits and attributes of plant tissues, and lead to their different functions. In this study, the composition of Amomun tsao-ko essential oils (AEOs) from different regions was first determined by a combination of gas chromatography–mass spectrometry (GC-MS) and gas chromatography–ion mobility spectrometry (GC-IMS). In total, 141 compounds were identified, of which terpenes and aldehydes were the main groups. Orthogonal partial least square discriminant analysis (OPLS-DA) distinguished the samples from different regions clearly, and the main differences were terpenes, aldehydes, and esters. Meanwhile, AEOs showed strong antibacterial activity against Staphylococcus aureus (S. aureus), and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) reached 0.20 mg/mL and 0.39–0.78 mg/mL, respectively. From correlation analysis, 1,8-cineole, (E)-dec-2-enal, citral, α-pinene, and α-terpineol were determined to be the potential antibacterial compounds. This study provides the basis for the variety optimization of A. tsao-ko and its application as a natural food preservative.

Details

Title
Insights into the Composition and Antibacterial Activity of Amomum tsao-ko Essential Oils from Different Regions Based on GC-MS and GC-IMS
Author
Li, Weidan 1 ; Li, Junjie 1 ; Qin, Zhen 1 ; Wang, Yang 2 ; Zhao, Pengyu 1 ; Gao, Haiyan 1 

 School of Life Sciences, Shanghai University, Shanghai 200444, China; [email protected] (W.L.); [email protected] (J.L.); [email protected] (Z.Q.); [email protected] (P.Z.) 
 School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; [email protected] 
First page
1402
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23048158
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670160726
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.