Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Understanding how pests and their natural enemies interact dynamically during the growing season and what drivers act on those interactions will help to develop efficient pest control strategies. We reviewed empirical and modeling publications on the drivers influencing the aphids–natural enemy dynamics. We found disparities between what is known empirically and what is used as main drivers in the models. Predation and parasitism are rarely measured empirically but are often represented in models, while plant phenology is supposed to be a strong driver of aphids’ dynamics while it is rarely used in models. Since modelers and empirical scientists do not share a lot of publications, we incite more crossover works between both communities to elaborate (i) new empirical settings based on simulation results and (ii) build more accurate and robust models integrating more key drivers of the aphid dynamics. These models could be integrated into decision support systems to help advisors and farmers to design more effective integrated pest management systems.

Abstract

(1) Although most past studies are based on static analyses of the pest regulation drivers, evidence shows that a greater focus on the temporal dynamics of these interactions is urgently required to develop more efficient strategies. (2) Focusing on aphids, we systematically reviewed (i) empirical knowledge on the drivers influencing the dynamics of aphid–natural enemy interactions and (ii) models developed to simulate temporal or spatio-temporal aphid dynamics. (3) Reviewed studies mainly focus on the abundance dynamics of aphids and their natural enemies, and on aphid population growth rates. The dynamics of parasitism and predation are rarely measured empirically, although it is often represented in models. Temperature is mostly positively correlated with aphid population growth rates. Plant phenology and landscape effects are poorly represented in models. (4) We propose a research agenda to progress towards models and empirical knowledge usable to design effective CBC strategies. We claim that crossover works between empirical and modeling community will help design new empirical settings based on simulation results and build more accurate and robust models integrating more key drivers of aphid dynamics. Such models, turned into decision support systems, are urgently needed by farmers and advisors in order to design effective integrated pest management.

Details

Title
Towards Predictions of Interaction Dynamics between Cereal Aphids and Their Natural Enemies: A Review
Author
Stell, Eric 1   VIAFID ORCID Logo  ; Meiss, Helmut 2 ; Lasserre-Joulin, Françoise 2 ; Therond, Olivier 3 

 LAE, Université de Lorraine, INRAE, F-68000 Colmar, France; [email protected]; LAE, Université de Lorraine, INRAE, F-54000 Nancy, France; [email protected] (H.M.); [email protected] (F.L.-J.) 
 LAE, Université de Lorraine, INRAE, F-54000 Nancy, France; [email protected] (H.M.); [email protected] (F.L.-J.) 
 LAE, Université de Lorraine, INRAE, F-68000 Colmar, France; [email protected] 
First page
479
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754450
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670163768
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.