Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Moso bamboo is characterized by its fast growth and high yield and is important as a carbon sink species. Therefore, understanding the biomass distribution of its components is crucial. Based on the measured individual biomass data of 66 Phyllostachys heterocycla cv. Pubescens plants in the Yixing state-owned forest in Jiangsu Province, nonlinear simultaneous equations with measurement errors were constructed using nonlinear error-in-variable models (NEIVM) (one step, two step) and nonlinear seemingly unrelated regression (NSUR). Variables affecting biomass were evaluated, including diameter at breast height (DBH), bamboo height (H), height to crown base (HCB), node length at DBH (NL), base diameter (BD), and bamboo age (A). DBH, H, and HCB had significant effects on the biomass of each component. They were used to construct a one-predictor system using DBH, a two-predictor system using DBH and H, and a three-predictor system using DBH, H, and HCB. Regardless of the number of variables used, the fitting accuracy of the NEIVM one-step method exceeded that of the two-step method, and that of NEIVM exceeded that of NSUR estimation. As a system using three predictive variables is better than other systems, we recommend using the one-step NEIVM method for Moso bamboo biomass estimation.

Details

Title
Compatible Biomass Model of Moso Bamboo with Measurement Error
Author
Zhou, Xiao 1 ; Zheng, Yaxiong 1 ; Guan, Fengying 1 ; Xiao, Xiao 1 ; Zhang, Xuan 1 ; Li, Chengji 1 

 International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland Administration, Beijing 100102, China; [email protected] (X.Z.); [email protected] (Y.Z.); [email protected] (X.X.); [email protected] (X.Z.); [email protected] (C.L.); National Location Observation and Research Station of the Bamboo Forest Ecosystem in Yixing, National Forestry and Grassland Administration, Yixing 214200, China 
First page
774
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670177153
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.