Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

(1) Background: Subjective memory complaints (SMCs) are common among the elderly and are important because they can indicate early cognitive impairment. The factor with the greatest correlation with SMCs is depression. The purpose of this study is to examine depressive symptoms among elderly individuals with SMCs through a network analysis that can analyze disease models between symptoms; (2) Methods: A total of 3489 data collected from elderly individuals in the community were analyzed. The Subjective Memory Complaints Questionnaire and Patient Health Questionnaire-9 were evaluated. For statistical analysis, we investigated the features of the depressive symptoms network, including centrality and clustering; (3) Results: Network analysis of the SMC group showed strong associations in the order of Q1–Q2 (r = 0.499), Q7–Q8 (r = 0.330), and Q1–Q6 (r = 0.239). In terms of centrality index, Q2 was highest in strength and expected influence, followed by Q1 in all of betweenness, strength, and expected influence; (4) Conclusions: The network analysis confirmed that the most important factors in the subjective cognitive decline group were depressed mood and anhedonia, which also had a strong correlation in the network pattern.

Details

Title
A Network Analysis of Depressive Symptoms in the Elderly with Subjective Memory Complaints
Author
Kim, Sunhae  VIAFID ORCID Logo  ; Lee, Kounseok  VIAFID ORCID Logo 
First page
821
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754426
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670203463
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.