It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
At the time of continuous development of all technologies, deep machine learning (more precisely, convolutional neural networks), which is one of the branches of artificial intelligence (AI), has found wide application in many fields, including photogrammetry and remote sensing. One of the areas where a lot of research is conducted using these methods is the recognition of objects in aerial and satellite imagery. Through the application of deep learning algorithms and neural networks, it is possible to automate labour-intensive processes. However, while object detection in images using machine learning is popular for natural scenes and in recent years also for nadir aerial and satellite imagery, for aerial oblique imagery at the moment of this research there were relatively few publications on the subject. The challengeable task in object detection is the time-consuming generation of training datasets when access is limited or non-existent. This study proposed the methodology to automate this process with use of existing resources for transferring of references to new databases for training models for detect objects on aerial oblique images. The object detection was performed using the YOLOv3 neural network. Experiment results tested on two datasets have shown that the proposed method could realize the task of object detection in oblique aerial images.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Warsaw University of Technology, Faculty of Geodesy and Cartography, Department of Photogrammetry, Remote Sensing and Spatial Information Systems, Warsaw, Poland; Warsaw University of Technology, Faculty of Geodesy and Cartography, Department of Photogrammetry, Remote Sensing and Spatial Information Systems, Warsaw, Poland