Abstract

The aim of this manuscript is to present a new concept of hesitant q-rung orthopair fuzzy sets (Hq-ROFSs) by combining the concept of the q-ROFSs as well as Hesitant fuzzy sets. The proposed concept is the generalization of the fuzzy sets, intuitionistic fuzzy sets, hesitant fuzzy sets, and Pythagorean fuzzy sets as well as intuitionistic hesitant fuzzy sets (IHFSs) and hesitant Pythagorean fuzzy sets (HPFSs).Furthermore some basic operational laws of hesitant q-rung orthopair fuzzy have been investigated. The score and accuracy functions are defined which play a vital role in decision making process for making comparison between the hesitant q-rung orthopair fuzzy numbers (Hq-ROFNs). Under the Hq-ROF environment, Hq-ROF weighted averaging (Hq-ROFWA) and Hq-ROF weighted geometric (Hq-ROFWG) operators are introduced and various properties of these aggregation operators are studied. Additionaly, a numerical application shows that how the proposed operators are utilized to solve multi-criteria decision making (MCDM) problems in which experts added their optimistic and pessimistic preferences. Finally the analysis of proposed method with other methods is presented which show that the method presented in this paper is more flexible and superior than existing methods.

Details

Title
Hesitant q-rung orthopair fuzzy aggregation operators with their applications in multi-criteria decision making
Author
Hussain, A; Ali, M I; Mahmood, T
Pages
117-134
Section
Research Paper
Publication year
2020
Publication date
May 2020
Publisher
University of Sistan and Baluchestan, Iranian Journal of Fuzzy Systems
ISSN
17350654
e-ISSN
26764334
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2671740780
Copyright
© 2020. This work is published under https://creativecommons.org/licenses/by-nc/2.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.