It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this paper, an adaptive fuzzy control scheme is proposed for a class of perturbed strict-feedback nonlinear systems with unknown discrete and distributed time-varying delays, and the proposed design method does not require a priori knowledge of the signs of the control gains. Based on the backstepping technique, the adaptive fuzzy controller is constructed. The main contributions of the paper are that (i) by constructing appropriate Lyapunov functionals and using the Nussbaum functions, the adaptive tracking control problem is solved for the strict-feedback unknown nonlinear systems with the unknown discrete and distributed time-varying delays and the unknown control directions (ii) the number of adaptive parameters is independent of the number of rules of fuzzy logic systems and system state variables, which reduces the computation burden greatly. It is proven that the proposed controller guarantees that all the signals in the closed-loop system are bounded and the system output converges to a small neighborhood of the desired reference signal. Finally, an example is used to show the effectiveness of the proposed approach.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer