It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The size reduction of copper interconnects degrades their performances due to increased surface scattering, which significantly reduces the effective electron mean free path. Unlike Cu, CNTs support ballistic electron flow with a lower value of mean free, which highly induces researchers to change copper by carbon nanotubes. In this way, this paper presents an accurate method based on the finite difference method describing the behavior of carbon nanotube interconnects in the time domain. The proposed algorithm is implemented in the MATLAB tool. The crosstalk between the interconnects and the induced delays are studied as a function of their length and the technology node (45nm, 32nm, 22nm and 16nm). The values obtained by the suggested method are compared with those of the PSPICE simulation tool. A good agreement between these results is observed, which demonstrates that CNT interconnects are more efficient than copper ones in terms of crosstalk induced delays.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer