It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper proposes a (Takagi-Sugeno-Kang) TSK fuzzy regression model that based on self-supervised learning and deep autoencoder to predict and monitor the real-time concentration of each ingredient in the fermentation process. The entire model consists of the following steps: obtaining and preprocessing sample spectral data to obtain a training set; using the training set to train a self-supervised feature extraction network model to optimize the parameters of the feature extraction network model; training the autoencoder network model to establish a dimensionality reduction model by using the feature-extracted data; performing TSK fuzzy regression on the data selected by the dimensionality reduction model to establish a concentration prediction model; inputting the spectral data of the solution to be tested to predict the concentration of the solution. Combined with the deep autoencoder feature extraction method of self-supervised learning, our model can not only construct a more complex nonlinear map than the traditional principal component analysis (PCA), but also ensure that the extracted features have semantic information that is beneficial to the subsequent regression prediction method. Combined with TSK regression prediction, our model can avoid the problem of excessive spectral data dimension and redundant information, and can give accurate and interpretable results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Artificial Intelligence and Computer Science, Jiangnan University , 1800 Lihu Avenue, Wuxi, Jiangsu 214122 , People’s Republic of China; Jiangsu Key Laboratory of Media Design and Software Technology , 1800 Lihu Avenue, Wuxi 214122, Jiangsu , People’s Republic of China