It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This work extends the capabilities of an operational dynamic wake model to yawed cases. The proposed framework brings together flow sensing and Lagrangian flow modeling into a unified framework: both the freestream flow field and the wake one are discretized as series of information-carrying particles. A source condition for these particles is thus obtained from the wind turbine measurements through flow sensing techniques. The estimated flow field state across the wind farm is finally reconstructed by propagating these particles downstream at their own characteristic velocity. The resulting framework is first presented and its extension to yawed turbine is then discussed. Comparison against high-fidelity Large Eddy Simulations of yawed wind turbines confirms the good potential of the approach: different yaw angles are considered and the performance of the model are evaluated. This study indicates that the proposed framework captures the relevant large scale wake features caused by the combined effect of yawing and wake meandering at a low computational cost thereby making it suitable for online model-based control.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain , 1348 Louvain-la-Neuve , Belgium