Abstract

Offshore wind turbines, especially floating wind turbines, are often simulated assuming rigid substructures to obtain computationally efficient simulation models for preliminary parameter variation studies. This causes large errors in the determination of coupled natural frequencies and internal loads, particularly with increasing turbine sizes. Finite Element models for flexible substructures were developed by several researchers, often resulting in a high simulation effort. In this paper, a modally reduced Finite Element model, precomputed by the SubDyn module of OpenFAST, is directly included in the generalized Equation of Motion of the Simplified Low Order Wind turbine model SLOW. The approach was tested with the DTU10MW reference wind turbine mounted on a flexible monopile. It shows a high agreement with the former beam-based Multibody System in the calculated coupled natural frequencies and steady state results both for the linear and nonlinear model. A basis has been established to integrate flexible bodies of any shape even into computational efficient Multibody Systems of reduced order, such as SLOW, without coupling of two modules as in OpenFAST. This might improve numerical stability due to unified equations of motion.

Details

Title
Efficient multibody modeling of offshore wind turbines with flexible substructures
Author
Steinacker, Heiner 1 ; Lemmer, Frank 2 ; Raach, Steffen 2 ; Schlipf, David 2 ; Po Wen Cheng 1 

 University of Stuttgart (SWE) , Allmandring 5B, 70569 Stuttgart , Germany 
 sowento GmbH , Hessenlauweg 14, 70569 Stuttgart , Germany 
First page
042007
Publication year
2022
Publication date
May 2022
Publisher
IOP Publishing
ISSN
17426588
e-ISSN
17426596
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2672748466
Copyright
Published under licence by IOP Publishing Ltd. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.