Abstract

Neuromorphic computing, a computing paradigm inspired by the human brain, enables energy-efficient and fast artificial neural networks. To process information, neuromorphic computing directly mimics the operation of biological neurons in a human brain. To effectively imitate biological neurons with electrical devices, memristor-based artificial neurons attract attention because of their simple structure, energy efficiency, and excellent scalability. However, memristor’s non-reliability issues have been one of the main obstacles for the development of memristor-based artificial neurons and neuromorphic computings. Here, we show a memristor 1R cross-bar array without transistor devices for individual memristor access with low variation, 100% yield, large dynamic range, and fast speed for artificial neuron and neuromorphic computing. Based on the developed memristor, we experimentally demonstrate a memristor-based neuron with leaky-integrate and fire property with excellent reliability. Furthermore, we develop a neuro-memristive computing system based on the short-term memory effect of the developed memristor for efficient processing of sequential data. Our neuro-memristive computing system successfully trains and generates bio-medical sequential data (antimicrobial peptides) while using a small number of training parameters. Our results open up the possibility of memristor-based artificial neurons and neuromorphic computing systems, which are essential for energy-efficient edge computing devices.

Designing energy efficient, uniform and reliable memristive devices for neuromorphic computing remains a challenge. By leveraging the self-rectifying behavior of gradual oxygen concentration of titanium dioxide, Choi et al. develop a transistor-free 1R cross-bar array with good uniformity and high yield.

Details

Title
Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing
Author
Park, See-On 1   VIAFID ORCID Logo  ; Jeong, Hakcheon 1   VIAFID ORCID Logo  ; Park, Jongyong 1 ; Bae, Jongmin 1 ; Choi, Shinhyun 1   VIAFID ORCID Logo 

 Korea Advanced Institute of Science and Technology (KAIST), The School of Electrical Engineering, Daejeon, Republic of Korea (GRID:grid.37172.30) (ISNI:0000 0001 2292 0500) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2672839242
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.