It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Resistant starch (RS) is beneficial for human health. Loss of starch branching enzyme IIb (BEIIb) increases the proportion of amylopectin long chains, which greatly elevates the RS content. Although high RS content cereals are desired, an increase in RS content is often accompanied by a decrease in seed weight. To further increase the RS content, genes encoding active-type starch synthase (SS) IIa, which elongates amylopectin branches, and high expression-type granule-bound SSI (GBSSI), which synthesizes amylose, were introduced into the be2b mutant rice. This attempt increased the RS content, but further improvement of agricultural traits was required because of a mixture of indica and japonica rice phonotype, such as different grain sizes, flowering times, and seed shattering traits. In the present study, the high RS lines were backcrossed with an elite rice cultivar, and the starch properties of the resultant high-yielding RS lines were analyzed.
Results
The seed weight of high RS lines was greatly improved after backcrossing, increasing up to 190% compared with the seed weight before backcrossing. Amylopectin structure, gelatinization temperature, and RS content of high RS lines showed almost no change after backcrossing. High RS lines contained longer amylopectin branch chains than the wild type, and lines with active-type SSIIa contained a higher proportion of long amylopectin chains compared with the lines with less active-SSIIa, and thus showed higher gelatinization temperature. Although the RS content of rice varied with the cooking method, those of high RS lines remained high after backcrossing. The RS contents of cooked rice of high RS lines were high (27–35%), whereas that of the elite parental rice was considerably low (< 0.7%). The RS contents of lines with active-type SSIIa and high-level GBSSI expression in be2b or be2b ss3a background were higher than those of lines with less-active SSIIa.
Conclusions
The present study revealed that backcrossing high RS rice lines with elite rice cultivars could increase the seed weight, without compromising the RS content. It is likely that backcrossing introduced loci enhancing seed length and width as well as loci promoting early flowering for ensuring an optimum temperature during RS biosynthesis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Akita Prefectural University, Department of Biological Production, Akita, Japan (GRID:grid.411285.b) (ISNI:0000 0004 1761 8827)