It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Clustering stroke patients with similar characteristics to predict subsequent vascular outcome events is critical. This study aimed to compare several clustering methods, particularly a deep neural network-based model, and identify the best clustering method with a maximally distinct 1-year outcome in patients with ischemic stroke. Prospective stroke registry data from a comprehensive stroke center from January 2011 to July 2018 were retrospectively analyzed. Patients with acute ischemic stroke within 7 days of onset were included. The primary outcomes were the composite of all strokes (either hemorrhagic or ischemic), myocardial infarction, and all-cause mortality within one year. Neural network-based clustering models (deep lifetime clustering) were compared with other clustering models (k-prototype and semi-supervised clustering, SSC) and a conventional risk score (Stroke Prognostic Instrument-II, SPI-II) to obtain a distinct distribution of 1-year vascular events. Ultimately, 7,650 patients were included, and the 1-year primary outcome event occurred in 13.1%. The DLC-Kuiper UB model had a significantly higher C-index (0.674), log-rank score (153.1), and Brier score (0.08) than the other cluster models (SSC and DLC-MMD) and the SPI-II score. There were significant differences in primary outcome events among the 3 clusters (41.7%, 13.4%, and 6.5% in clusters 0, 1, and 2, respectively) when the DLC-Kuiper UB model was used. A neural network-based clustering model, the DLC-Kuiper UB model, can improve the clustering of stroke patients with a maximally distinct distribution of 1-year vascular outcomes among each cluster. Further studies are warranted to validate this deep neural network-based clustering model in ischemic stroke.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Chonnam National University Hospital, Department of Neurology, Gwangju-Jeonnam Regional Cerebrovascular Center, Chonnam National University Medical School, Gwangju, Korea (GRID:grid.411597.f) (ISNI:0000 0004 0647 2471)
2 Chonnam National University, Department of Mathematics and Statistics, Gwangju, Korea (GRID:grid.14005.30) (ISNI:0000 0001 0356 9399)
3 Gwangju Institute of Science and Technology, AI Graduate School, Gwangju, Korea (GRID:grid.61221.36) (ISNI:0000 0001 1033 9831)