Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, the nonlinear effects of the built environment on bus–metro-transfer ridership are explored, based on Shanghai metro data, with an extreme gradient-boosting decision-trees (XGBoost) model. It was found that the bus-network density had the largest influence on transfer ridership, contributing 27.56% predictive power for transfer ridership, followed by closeness centrality and bus-stop density, and their contribution rates are 21.6% and 17.27%, respectively. Local explanations for the model reveal the following conclusions: most built-environment variables have nonlinear and threshold effects on bus–metro ridership. The suggested values for the dominant contributors to bus–metro-transfer ridership are obtained. For example, bus-network density, bus-stop density, and closeness centrality were 12.8 km/sq. km, 11 counts/sq. km, and 0.18 km/sq. km, respectively, for maximizing bus–metro-transfer ridership. The interaction impacts of the bus–metro connection characteristics and the closeness centrality of metro stations on transfer ridership were, also, examined. The result showed that the setting of bus–metro-transfer facilities depended on the location of metro stations. It was necessary to improve the bus–metro-connection system, in metro stations with high closeness centrality.

Details

Title
Exploring the Nonlinear Effects of Built Environment on Bus-Transfer Ridership: Take Shanghai as an Example
Author
Liu, Ding; Wuyue Rong; Zhang, Jin 1 ; Ying-En (Ethan) Ge  VIAFID ORCID Logo 

 College of Transport & Communications, Shanghai Maritime University, Shanghai 201306, China; [email protected] (D.L.); [email protected] (W.R.); [email protected] (Y.-E.G.) 
First page
5755
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2674324372
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.