Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

5-Lipoxygenase (5-LOX) converts arachidonic acid to lipidic inflammatory mediators such as leukotrienes (LTs). In diseases such as asthma, LTs contribute to a physiopathology that could be reverted by blocking 5-LOX. Natural products with anti-inflammatory potential such as ginger have been used as nutraceuticals since ancient times. 6-Gingerol and 6-shogaol are the most abundant compounds in the ginger rhizome; they possess anti-inflammatory, antioxidant, and chemopreventive properties. In the present study, 6-gingerol and 6-shogaol structures were analyzed and compared with two commercial 5-LOX inhibitors (zileuton and atreleuton) and with other inhibitor candidates (3f, NDGA, CP 209, caffeic acid, and caffeic acid phenethyl ester (CAPE)). The pharmacokinetics and toxicological properties of 6-gingerol, 6-shogaol, and the other compounds were evaluated. Targeted molecular coupling was performed to identify the optimal catalytic pocket for 5-LOX inhibition. The results showed that 6-gingerol and 6-shogaol follow all of the recommended pharmacokinetic parameters. These compounds could be inhibitors of 5-LOX because they present specific interactions with the residues involved in molecular inhibition. The current study demonstrated the potential of 6-gingerol and 6-shogaol as anti-inflammatory agents that inhibit 5-LOX, as they present a high level of performance in the toxicological analysis and could be catabolized by the cytochrome p450 enzymatic complex; however, 6-gingerol was superior in safety compared to 6-shogaol.

Details

Title
Active Compounds in Zingiber officinale as Possible Redox Inhibitors of 5-Lipoxygenase Using an In Silico Approach
Author
Ley-Martínez, Jaqueline Stephanie 1   VIAFID ORCID Logo  ; Ortega-Valencia, Jose Erick 1 ; García-Barradas, Oscar 2   VIAFID ORCID Logo  ; Jiménez-Fernández, Maribel 3   VIAFID ORCID Logo  ; Uribe-Lam, Esmeralda 4   VIAFID ORCID Logo  ; Vencedor-Meraz, Carlos Iván 5 ; Oliva-Ramírez, Jacqueline 1   VIAFID ORCID Logo 

 Laboratorio de Ingeniería de Superficies, Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Lago de Guadalupe Km. 3.5, Margarita Maza de Juárez, Ciudad López Mateos 52926, Mexico, Mexico; [email protected] 
 Instituto de Química Aplicada, Universidad Veracruzana, Av. Dr. Luis Castelazo s/n, Col. Industrial-Animas, Xalapa Enríquez 91190, Veracruz, Mexico; [email protected] 
 Centro de Investigación y Desarrollo en Alimentos, Universidad Veracruzana, Av. Dr. Luis Castelazo s/n, Col. Industrial-Animas, Xalapa Enríquez 91190, Veracruz, Mexico; [email protected] 
 Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, México, Epigmenio González 500, Fraccionamiento San Pablo, Querétaro 76130, Querétaro, Mexico; [email protected] 
 Research and Development Department, Genolife-Información de vida S.A.P.I de C.V., Blvd. Paseo Rio Sonora, Hermosillo 83270, Sonora, Mexico; [email protected] 
First page
6093
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2674364444
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.