Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With widely deployed smart meters, non-intrusive energy measurements have become feasible, which may benefit people by furnishing a better understanding of appliance-level energy consumption. This work is a step forward in using graph signal processing for non-intrusive load monitoring (NILM) by proposing two novel techniques: the spectral cluster mean (SC-M) and spectral cluster eigenvector (SC-EV) methods. These methods use spectral clustering for extracting individual appliance energy usage from the aggregate energy profile of the building. After clustering the data, different strategies are employed to identify each cluster and thus the state of each device. The SC-M method identifies the cluster by comparing its mean with the devices’ pre-defined profiles. The SC-EV method employs an eigenvector resultant to locate the event and then recognize the device using its profile. An ideal dataset and a real-world REFIT dataset are used to test the performance of these two techniques. The f-measure score and disaggregation accuracy of the proposed techniques demonstrate that these two techniques are competitive and viable, with advantages of low complexity, high accuracy, no training data requirement, and fast processing time. Therefore, the proposed techniques are suitable candidates for NILM.

Details

Title
Non-Intrusive Load Monitoring of Buildings Using Spectral Clustering
Author
Ghaffar, Muzzamil; Sheikh, Shakil R  VIAFID ORCID Logo  ; Naseer, Noman  VIAFID ORCID Logo  ; Zia Mohy Ud Din; Hafiz Zia Ur Rehman  VIAFID ORCID Logo  ; Naved, Muhammad
First page
4036
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2674391628
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.