Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Image super-resolution aims to reconstruct a high-resolution image from its low-resolution counterparts. Conventional image super-resolution approaches share the same spatial convolution kernel for the whole image in the upscaling modules, which neglect the specificity of content information in different positions of the image. In view of this, this paper proposes a regularized pattern method to represent spatially variant structural features in an image and further exploits a dynamic convolution kernel generation method to match the regularized pattern and improve image reconstruction performance. To be more specific, first, the proposed approach extracts features from low-resolution images using a self-organizing feature mapping network to construct regularized patterns (RP), which describe different contents at different locations. Second, the meta-learning mechanism based on the regularized pattern predicts the weights of the convolution kernels that match the regularized pattern for each different location; therefore, it generates different upscaling functions for images with different content. Extensive experiments are conducted using the benchmark datasets Set5, Set14, B100, Urban100, and Manga109 to demonstrate that the proposed approach outperforms the state-of-the-art super-resolution approaches in terms of both PSNR and SSIM performance.

Details

Title
A Dynamic Convolution Kernel Generation Method Based on Regularized Pattern for Image Super-Resolution
Author
Feng, Hesen 1   VIAFID ORCID Logo  ; Ma, Lihong 1 ; Tian, Jing 2   VIAFID ORCID Logo 

 School of Electronics & Information Engineering, South China University of Technology, Guangzhou 510640, China; [email protected]; National Research Center for Mobile Ultrasonic Detection, Guangzhou 510640, China 
 Institute of Systems Science, National University of Singapore, Singapore 119615, Singapore; [email protected] 
First page
4231
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2674406918
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.