It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Acetohydroxyacid synthase (AHAS) is the target for more than 50 commercial herbicides; first applied to crops in the 1980s. Since then, 197 site-of-action resistance isolates have been identified in weeds, with mutations at P197 and W574 the most prevalent. Consequently, AHAS is at risk of not being a useful target for crop protection. To develop new herbicides, a functional understanding to explain the effect these mutations have on activity is required. Here, we show that these mutations can have two effects (i) to reduce binding affinity of the herbicides and (ii) to abolish time-dependent accumulative inhibition, critical to the exceptional effectiveness of this class of herbicide. In the two mutants, conformational changes occur resulting in a loss of accumulative inhibition by most herbicides. However, bispyribac, a bulky herbicide is able to counteract the detrimental effects of these mutations, explaining why no site-of-action resistance has yet been reported for this herbicide.
Acetohydroxyacid synthase (AHAS) is the target of more than 50 commercial herbicides, with many site-of-action resistance isolates identified in weeds. Here, the authors report the structural and kinetic characterizations to explain the effect AHAS mutations have on herbicide potency.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Australia (GRID:grid.1003.2) (ISNI:0000 0000 9320 7537)
2 The University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Australia (GRID:grid.1003.2) (ISNI:0000 0000 9320 7537); Technical University of Ambato, Tungurahua, Faculty of Food Science, Engineering and Biotechnology, Ambato, Ecuador (GRID:grid.442092.9) (ISNI:0000 0001 2186 6637)